Advanced Algorithms

Nicole Megow (Universität Bremen) SoSe 2025

Network Flows

Lecture 5

Recording of this Lecture

This lecture will be recorded

- ▶ Recording only of the lecturers by themselves.
- ▶ If there are questions from the audience, please make a clear signal if the microphone shall be muted.
- Our goal is to record the lecture, but it is no guarantee that each lecture will be recorded.

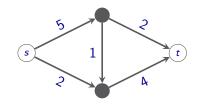
Modeling Network Flows . . .

... and much more.

Network

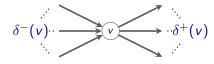
Network

- G = (V, A, c): weighted Digraph
- ▶ $s \in V$: source
- ▶ $t \in V$: sink
- $ightharpoonup c: A
 ightarrow \mathbb{R}_+$: capacities



Recap: For vertices $v \in V$:

- $\delta^-(v) := \{(u, v) \in A\}$ set of incoming arcs in v
- $\delta^+(v) := \{(v, u) \in A\}$ set of outgoing arcs from v



Maximum Flows and Minimum

Cuts

s-t-Flow

Networksent

- G = (V, A, c): weighted Digraph
- ▶ $s \in V$: source
- ▶ $t \in V$: sink
- $c: A \to \mathbb{R}_+$: capacities



A **feasible** s-t-**flow** is a function $f: A \to \mathbb{R}_+$, $a \in A$, which has the following properties:

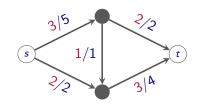
- ► Capacity constraint: $0 \le f(a) \le c(a)$, $\forall a \in A$
- ► Flow conservation:

$$\sum_{\mathsf{a}\in\delta^-(\mathsf{v})}f(\mathsf{a})=\sum_{\mathsf{a}\in\delta^+(\mathsf{v})}f(\mathsf{a}), \qquad orall \mathsf{v}\in Vackslash\{\mathsf{s},t\}$$

Max s-t-flow Problem

The excess of a flow f in $v \in V$ is

$$ex_f(v) := \sum_{a \in \delta^+(v)} f(a) - \sum_{a \in \delta^-(v)} f(a).$$



The value of a flow is $val(f) = ex_f(s)$.

Because of flow conservation we have $ex_f(s) = -ex_f(t)$, and in every other vertex $v \neq s$, t we have $ex_f(v) = 0$.

Max s-t-flow Problem

Given a network N = (V, A, c, s, t). Find a feasible s-t-flow f of maximum value val(f).

Max s-t-flow Problem

Remark: If $f(a) \in \mathbb{N}$, then f is an integer flow. In general, f(a) does not need to be integer (fractional).

 \longrightarrow Does not matter for transportation of gas, water, electricity, but is important for routing trucks.

Theorem

The Max s-t-flow Problem with integer capacities $c(a) \in \mathbb{N}$, $a \in A$, always has an integer optimal solution.

Proof. (later)

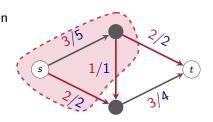
Follows from the analysis of the algorithms.

s-t-Cut

For $U \subseteq V$ let $\delta^+(U) := \{(u, v) \in A \mid u \in U, v \in V \setminus U\}.$

Let $U\subseteq V$ with $s\in U$ and $t\notin U$, then $C:=\delta^+(U)$ is an s-t-Cut. The cut capacity is

$${\sf cap}({\it C}):=\sum_{a\in {\it C}}c(a).$$



Min <u>s-t-cu</u>t Problem

Given a network, find an s-t-cut C of minimum capacity cap(C).

The cut capacity is obviously an upper bound on the value of a maximum flow.

Application for cuts and flows

Maximum Flows

- Delivery capacities of gas, water, electricity, oil, ...
- Production capacity of production lines
- Absorption capacity of waste water pipes
- Delivery capacities of logistics networks
- Network capacities of telecommunication networks
- typical subproblem for similar but more complicated problems

Minimum Cuts

- Analysis of bottlenecks in the above networks
- Robustness/susceptibility to disruption of the above networks

Flow value \leq cut capacity

Theorem

Let N = (V, A, c, s, t) be a network. Let f be an s-t-flow and $C \subseteq A$ an s-t-cut. Then it holds

$$val(f) \leq cap(C)$$
.

Proof. Consider cut $C = \delta^+(U)$ for $U \subset V$ with $s \in U$, $t \notin U$.

- ► From definition: $val(f) = ex_f(s) = \sum_{a \in \delta^+(s)} f(a) \sum_{a \in \delta^-(s)} f(a)$.
- ▶ Due to flow conservation we have: $\sum_{v \in U \setminus \{s\}} ex_f(v) = \sum_{v \in U \setminus \{s\}} \left(\sum_{a \in \delta^+(v)} f(a) \sum_{a \in \delta^-(v)} f(a) \right) = 0$
- ► Therefore.

neeretore,
$$val(f) = ex_f(s) = \sum_{v \in U} ex_f(v) = \sum_{v \in U} \left(\sum_{a \in \delta^+(v)} f(a) - \sum_{a \in \delta^-(v)} f(a) \right)$$

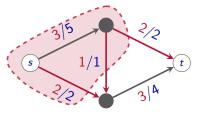
$$= \sum_{a \in \delta^+(U)} f(a) - \sum_{a \in \delta^-(U)} f(a) \le \operatorname{cap}(C) \quad \Box$$

Max-Flow = Min-Cut

In fact, the much stronger statement of equality holds...

Theorem (Max-Flow Min-Cut Theorem)

Given a network N=(V,A,c,s,t) with capacities $c(a) \geq 0$, $a \in A$. Then the value of a maximum s-t-flow is equal to the minimum s-t-cut capacity.



max flow = min cut

Proof. later; first recap other important tools.

The residual graph

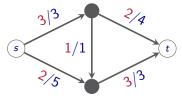
Construction

- ▶ Introduce backwards arc: $\overleftarrow{A} := \{ \overleftarrow{a} : a \in A \}$
- ▶ Residual capacities for $a \in \overleftrightarrow{A} := A \cup \overleftarrow{A}$ are defined as

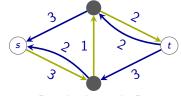
$$ar{c}_f(a) := egin{cases} c(a) - f(a) & ext{falls } a \in A \text{ (forward arc)} \\ f(a) & ext{falls } a \in \overleftarrow{A} \text{ (backward arc)} \end{cases}$$

Arcs with $\bar{c}_f(a) = 0$ are deleted.

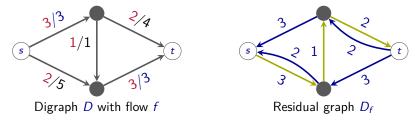
Residual graph
$$D_f = (V, A_f)$$
: $A_f := \{a \in \overleftrightarrow{A} : \overline{c}_f(a) > 0\}$



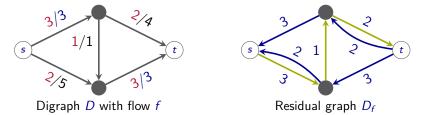
Digraph D with flow f



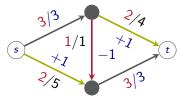
Residual graph D_f

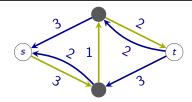


► f-augmenting Path P: s-t-path in D_f



- ► f-augmenting Path P: s-t-path in D_f
- ▶ Bottleneck capacity of $P: \gamma := \min_{a \in P} \bar{c}_f(a)$



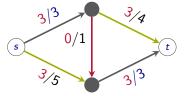


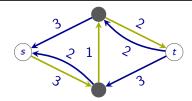
Digraph D with flow f

Residual graph D_f

- ► f-augmenting Path P: s-t-path in D_f
- ▶ Bottleneck capacity of $P: \gamma := \min_{a \in P} \bar{c}_f(a)$
- ▶ Increase of flow f along P by γ gives a flow f' in D:

$$f'(a) := \begin{cases} f(a) + \gamma & \text{if } a \in P \\ f(a) - \gamma & \text{if } \overleftarrow{a} \in P \\ f(a) & \text{otherwise} \end{cases}$$



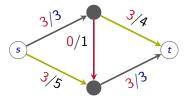


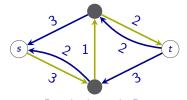
Digraph D with flow f

Residual graph D_f

- ► f-augmenting Path P: s-t-path in D_f
- ▶ Bottleneck capacity of $P: \gamma := \min_{a \in P} \bar{c}_f(a)$
- ▶ Increase of flow f along P by γ gives a flow f' in D:

$$f'(a) := \begin{cases} f(a) + \gamma & \text{if } a \in P \\ f(a) - \gamma & \text{if } \overleftarrow{a} \in P \\ f(a) & \text{otherwise} \end{cases}$$





Digraph D with flow f

Residual graph D_f

- ► f-augmenting Path P: s-t-path in D_f
- ▶ Bottleneck capacity of $P: \gamma := \min_{a \in P} \bar{c}_f(a)$
- ▶ Increase of flow f along P by γ gives a flow f' in D:

$$f'(a) := \begin{cases} f(a) + \gamma & \text{if } a \in P \\ f(a) - \gamma & \text{if } \overleftarrow{a} \in P \\ f(a) & \text{otherwise} \end{cases}$$

Theorem

f' ist a feasible s-t-flow in D with flow value $val(f') = val(f) + \gamma$.

Optimality criteria

Theorem

Let N = (V, A, c, s, t) be a network and f a feasible s-t-flow. Then we have:

f maximum \Leftrightarrow \nexists f-augmenting s-t-path in the residual graph.

Proof.

" \Rightarrow ": clear, since an f-augmenting s-t-path would increase the flow value.

" \Leftarrow ": Let $U \subset V$ be the set of vertices that are reachable from s in the residual graph via directed paths. $\delta^+(U) = C$ is an s-t-cut, because $s \in U$ and $t \notin U$.

$$\Rightarrow val(f) = ex_f(s) \le cap(C).$$
 (*)

- ► For arcs $a = (x, y) \in \delta^+(U)$ in N it holds f(a) = c(a) (otherwise $y \in U$).
- ► For arcs $a = (u, v) \in \delta^-(U)$ in N it holds f(a) = 0 (otherwise $u \in U$).

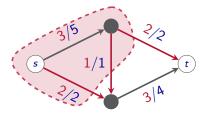
$$val(f) = ex_f(s) = \sum_{a \in \delta^+(U)} f(a) - \sum_{a \in \delta^-(U)} f(a) = \sum_{a \in \delta^+(U)} c(a) = \operatorname{cap}(C)$$

With (*) it follows that f is maximum.

Max-Flow Min-Cut Theorem

Theorem (Max-Flow Min-Cut Theorem)

Given a network N=(V,A,c,s,t) with capacities $c(a) \geq 0$, $a \in A$. Then the value of a maximum s-t-flow is equal to the value of a minimum s-t-cut capacity.



max flow = min cut

Proof. Let f be a maximum flow. Then due to the previous theorem there is no f-augmenting s-t-path in the residual graph. Construct cut C as in the proof of the previous theorem. Then val(f) = cap(C).

Problem

Algorithms for the Max-flow

Augmenting Path Algorithm

Algorithm (Ford & Fulkerson, 1957)

- 1. f := 0
- 2. As long as there exists an f-augmenting path P in the residual graph, increase the flow f along P by $\min_{a \in P} \bar{c}_f(a)$.
- **3**. Return *f* .

... Example at the board.

Augmenting Path Algorithm

Algorithm (Ford & Fulkerson, 1957)

- 1. f := 0
- 2. As long as there exists an f-augmenting path P in the residual graph, increase the flow f along P by $\min_{a \in P} \bar{c}_f(a)$.
- 3. Return f.

Theorem

If the arc capacities are integer, then the algorithm computes an integer maximum s-t-flow in running-time $\mathcal{O}(m \cdot M)$, where M is the value of a maximum flow.

Proof Idea.

- ▶ Flow is maximum if and only if there is no augmenting path.
- ▶ Algorithm increases/decreases flow on an arc by γ , which is integer for $c(a) \in \mathbb{Z}_+$. \Rightarrow flow integer
- In every iteration is $\gamma > 0$ and the flow value increases. \Rightarrow Flow is maximum when algorithm terminates.

Running time of Augmenting Path Algorithm

Running time Ford-Fulkerson $\mathcal{O}(|A| \cdot M)$, with M value of maximum flow

M can be large, roughly $|A| \cdot c_{\max}$ where $c_{\max} := \max_{a \in A} c(a)$. This is only pseudopolynomial in input size.

... see also the exercise.

Theorem (Edmonds and Karp, 1969)

The variant of the Ford-Fulkerson Algorithm, in which the selected augmenting path is always a shortest s-t path in the residual graph (w.r.t. number of arcs), has a running time of $\mathcal{O}(m^2 \cdot n)$.

= polynomial running time

Proof. At the board.

Recap

- ► Networks and maximum flows in networks
- Residual graphs and augmenting paths
- ► Ford-Fulkerson algorithm (pseudopolynomial running time)
- ► Edmonds-Karp algorithm: special path selection, polynomial
- ► Max-flow min-cut theorem
 - Question: Given a max flow, how to find a minimum cut?

