Advanced Algorithms

Nicole Megow (Universität Bremen) SoSe 2025

Network Flows: Blocking Flows

Lecture 6

Recording of this Lecture

This lecture will be recorded

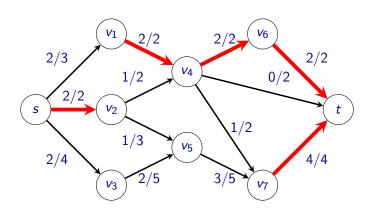
- ▶ Recording only of the lecturers by themselves.
- ▶ If there are questions from the audience, please make a clear signal if the microphone shall be muted.
- Our goal is to record the lecture, but it is no guarantee that each lecture will be recorded.

Last Lecture

- ► Introduction to network flows
- Optimality criterion of augmenting paths
- ► Max-Flow Min-Cut Theorem
- ► Ford-Fulkerson algorithm: $O(m \cdot M)$
- ► Edmonds-Karp algorithm: $O(nm^2)$

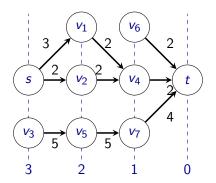
Blocking Flows

A blocking flow in an s-t-network $\mathcal{N}=(V,E,c,s,t)$ is a feasible flow that saturates at least one edge on every s-t-path in \mathcal{N} .



Layered Networks

Let $\mathcal{N}=(V,E,c,s,t)$ be an s-t-network. The layered network of \mathcal{N} w.r.t. f is the s-t-network $\mathcal{N}'=(V,E',c',s,t)$, where $E'=\{(u,v)\in E_f\mid \delta_f(v)<\delta_f(u)\}$ and c' is the restriction of c_f to E'. For an $i\in\mathbb{N}_0$, the layer i of \mathcal{N}' is the set of vertices $V_i=\{v\in V\mid \delta_f(v)=i\}$.



Computing Blocking Flows

Lemma

A blocking flow in an acyclic s-t-network $\mathcal{N}=(V,E,c,s,t)$ with n vertices and m edges be computed in O(nm) time.

We use the following algorithm:

- Repeatedly start a DFS from s until reaching t.
- \blacktriangleright Whenever the DFS retreats over an edge e, remove e.
- ▶ Whenever reaching *t*, carry out an augmentation along the found *s-t*-path. Remove all edges that become saturated by the augmentation.
- ► Stop when *t* is unreachable from *s*.

Dinitz' Algorithm

Dinitz' Algorithm

- 1. $f \leftarrow 0$
- 2. As long as f is not maximum, compute a blocking flow h in the layered network of \mathcal{N}_f w.r.t. f, and set $f \leftarrow f + h$
- 3. Return f

Lemma

Every iteration of Dinitz' algorithm strictly increases $\delta_f(s)$.

Theorem

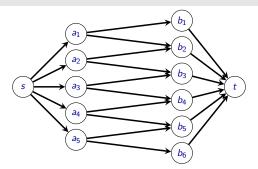
Dinitz' algorithm computes a maximum flow in an s-t-network with n vertices and m edges in $O(n^2m)$ time.

Edmond-Karp's algorithm only runs in $O(nm^2)$ time.

Simple *s-t*-Networks

An s-t-network $\mathcal{N} = (V, E, c, s, t)$ is simple if all capacities are integers, and for every $v \in V \setminus \{s, t\}$, at least one of the following conditions holds:

- 1. the capacities of the edges entering v sum up to at most 1, or
- 2. the capacities of the edges leaving v sum up to at most 1.



Dinitz' Algorithm for Simple Networks

Lemma

Dinitz' algorithm terminates after at most $O(\sqrt{n})$ iterations when applied to a simple s-t-network.

Lemma

A blocking flow in the layered network $\mathcal L$ of a simple s-t-network $\mathcal N$ w.r.t. an integral flow f in $\mathcal N$ can be computed in O(n+m) time.

Theorem

Dinitz' algorithm computes a maximum flow in a simple s-t-network with n vertices and m edges in $O(m \cdot \sqrt{n})$ time.

A maximum matching in a bipartite graph with n vertices and m edges can be computed in $O(m \cdot \sqrt{n})$ time.

