Advanced Algorithms

Nicole Megow (Universität Bremen) SoSe 2025

Network Flows: Preflow-Push Algorithms

Lecture 7

Recording of this Lecture

This lecture will be recorded

- Recording only of the lecturers by themselves.
- ▶ If there are questions from the audience, please make a clear signal if the microphone shall be muted.
- Our goal is to record the lecture, but it is no guarantee that each lecture will be recorded.

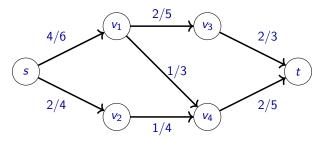
Preflows

Definition (Preflow)

Let $\mathcal{N}=(V,E,c,s,t)$ be an s-t-network. A preflow in \mathcal{N} is a function $f:V\times V\to\mathbb{R}$ such that

- 1. for all $e \in E$, $0 \le f(e) \le c(e)$, and
- 2. for all $v \in V \setminus \{s\}$, $\sum_{e \in \delta^-(v)} f(e) \ge \sum_{e \in \delta^+(v)} f(e)$.

Excess: $e_f(v) := \sum_{e \in \delta^-(v)} f(e) - \sum_{e \in \delta^+(v)} f(e)$



Height Function and Eligible Edges

Definition (Height function)

Let $\mathcal{N}=(V,E,c,s,t)$ be an s-t-network. A height function is a function $d:V\to\mathbb{N}_0$. A height function d is legal w.r.t. a preflow f in \mathcal{N} if

- 1. d(s) = |V|,
- 2. d(t) = 0, and
- 3. $d(u) \leq d(v) + 1$ for every edge $(u, v) \in E_f$.

Definition (Eligible edges and active vertices)

An edge $(u, v) \in E_f$ is eligible w.r.t. a preflow f and a height d if

- 1. $e_f(u) > 0$, and
- 2. d(u) = d(v) + 1.

Moreover, we call a vertex $v \in V \setminus \{s, t\}$ active if $e_f(v) > 0$.

Push and Relabel Operations

Push

Relabel

Function Relabel(u):

Precondition : u is active and no edge out of u is eligible $d(u) \leftarrow d(u) + 1$

The Generic Preflow-Push Algorithm

Init

```
Function Init (\mathcal{N}):
d(s) = n, d(v) = 0 \text{ for all } v \in V \setminus \{s\}
f := 0
\text{for } v \in V \text{ with } (s, v) \in E \text{ do}
 f(s, v) \leftarrow c(s, v)
```

Full Algorithm

Correctness

Lemma

After Init and after every Push or Relabel, f is a preflow and d is a legal height function with respect to f.

Lemma

Let f be a preflow such that there exists a legal height function d with respect to f. Then, there exists no s-t-path in \mathcal{N}_f .

Lemma

If the algorithm terminates, then f is a maximum flow in N.

Running Time Part 1

Lemma

Let f be a preflow, and let $w \in V$ be an active vertex with respect to f. Then, there exists a path in \mathcal{N}_f from w to s.

Lemma

For all $u \in V$, we always have $d(u) \leq 2n - 1$.

Corollary

The algorithm performs at most $2n^2$ Relabel operations.

Lemma

There are at most 2nm saturating Push operations.

Running Time Part 2

Lemma

There are at most $6n^2m$ non-saturating Push operations.

Each Init, Push, and Relabel operation takes O(1) time

Theorem

The generic Preflow-Push algorithm computes a maximum flow in an s-t-network with n vertices and m edges in $O(n^2m)$ time.

The Max-Height Algorithm

Discharge

```
Function Discharge (u):

while u is active and at least one edge (u, v) \in E_f is eligible do

Push(u,v)

if u is active then

Relabel (u)
```

The Max-Height Algorithm

```
Input: An s-t-network \mathcal{N} = (V, E, c, s, t)

Init (\mathcal{N})

while at least one vertex is active do
u \leftarrow \text{ an active vertex with height } d(u) = \max_{v \in A} d(v)
\text{Discharge}(u)
return f
```


Analysis Part 1

- $ightharpoonup d^* = \max_{v \in A} d(v)$, a^* number of active vertices with height d^*
- ► $b(v) = |\{u \in V \mid d(u) \leq d(v)\}|$

For $K \geq 1$, we define a potential function $\Phi = \Phi_1 + \Phi_2 + \Phi_3$, where

- $ightharpoonup \Phi_1 = Kd^*$,
- $ightharpoonup \Phi_2 = \min\{a^*, K\}$, and
- $\blacktriangleright \ \Phi_3 = \frac{1}{K} \sum_{v \in V} b(v).$

Lemma

For every Push operation, we have $\Delta \Phi_1 + \Delta \Phi_2 \leq 0$. Moreover, if d^* changes due to the Push, we have $\Delta \Phi_1 + \Delta \Phi_2 \leq -1$.

Analysis Part 2

- ▶ $d^* = \max_{v \in A} d(v)$, a^* number of active vertices with height d^*
- ▶ $b(v) = |\{u \in V \mid d(u) \leq d(v)\}|$

For $K \geq 1$, we define a potential function $\Phi = \Phi_1 + \Phi_2 + \Phi_3$, where

- $ightharpoonup \Phi_1 = Kd^*$,
- $ightharpoonup \Phi_2 = \min\{a^*, K\}$, and
- $\blacktriangleright \ \Phi_3 = \frac{1}{K} \sum_{v \in V} b(v).$

Lemma

We have the following bounds on $\Delta \Phi$:

- ▶ If Relabel(u) is being executed, then $\Delta \Phi \leq K + n/K$.
- ▶ If Push(u, v) is being executed and saturating, then $\Delta \Phi \le n/K$.
- ▶ If Push(u, v) is being executed and non-saturating, then $\Delta \Phi \leq -1$.

Analysis Part 3

- $ightharpoonup d^* = \max_{v \in A} d(v)$, a^* number of active vertices with height d^*
- ▶ $b(v) = |\{u \in V \mid d(u) \leq d(v)\}|$

For $K \geq 1$, we define a potential function $\Phi = \Phi_1 + \Phi_2 + \Phi_3$, where

- $ightharpoonup \Phi_1 = Kd^*$,
- $\blacktriangleright \Phi_2 = \min\{a^*, K\}, \text{ and }$
- $\blacktriangleright \ \Phi_3 = \frac{1}{K} \sum_{v \in V} b(v).$

Lemma

The number of non-saturating Push operations is at most $O(n^2\sqrt{m})$.

Theorem

The Max-Height algorithm computes a maximum flow in an s-t-network with n vertices and m edges in $O(n^2\sqrt{m})$ time.

