Advanced Algorithms

Nicole Megow (Universität Bremen) SoSe 2025

Network Flows: Min-Cost Flows

Lecture 8

Recording of this Lecture

This lecture will be recorded

- Recording only of the lecturers by themselves.
- ▶ If there are questions from the audience, please make a clear signal if the microphone shall be muted.
- Our goal is to record the lecture, but it is no guarantee that each lecture will be recorded.

Networks with Supplies, Demands, and Costs

Definition (Network with costs)

A tuple $\mathcal{N} = (V, E, c, b, p)$ is a network with cost if

- V is a finite set of vertices,
- $ightharpoonup E \subseteq V \times V$ is a set of directed edges,
- $ightharpoonup c: E
 ightarrow \mathbb{R}_{>0}$ capacities,
- ▶ $b: V \to \mathbb{R}$ is a supply function, and
- ▶ $p: E \to \mathbb{R}_{>0}$ is a cost function.

Feasible Flows with Costs

Definition (Feasible flow)

A feasible flow in a network $\mathcal{N} = (V, E, c, b, p)$ is a function $f : E \to \mathbb{R}_{\geq 0}$ such that

- ▶ $f(e) \le c(e)$ for all $e \in E$,
- $\blacktriangleright \sum_{e \in \delta^+(v)} f(e) \sum_{e \in \delta^-(v)} f(e) = b(v) \text{ for all } v \in V.$

Definition (Cost of a flow)

The cost of a flow f in a network $\mathcal{N} = (V, E, c, b, p)$ is defined as

$$cost(f) = \sum_{e \in E} p(e)f(e).$$

In the min-cost flow problem, we want to find a feasible flow f with minimum cost.

Circulations and Cycles

Definition (Circulation)

A circulation f in a network $\mathcal{N} = (V, E, c, b, p)$ is flow f that is feasible for the network (V, E, c, 0, p).

Lemma

Let f and f' be two feasible flows in a network $\mathcal{N} = (V, E, c, b, p)$. Then, f' - f is a circulation in \mathcal{N}_f .

Lemma

Let f be a circulation in a network $\mathcal{N} = (V, E, c, b, p)$. Then, there flows f_1, \ldots, f_k with $k \leq m$ such that $f = f_1 + \ldots + f_k$

- ▶ f_i is a feasible flow in N for all $i \in [k]$, and
- ▶ f_i takes positive values only on edges of a cycle C_i in N for all $i \in [k]$.

Optimality of Minimum-Cost Flows

Cost of a cycle $cost(C) = \sum_{e \in C} p(e)$.

A cycle C is negative if cost(C) < 0.

Lemma

A feasible flow f in a network $\mathcal{N} = (V, E, c, b, p)$ is optimal if and only if there is no negative cycle in \mathcal{N}_f .

The Generic Cycle-Canceling Algorithm

Cycle-Canceling Algorithm

```
Input: A network \mathcal{N} = (V, E, c, b, p)
Output: An min-cost flow f in \mathcal{N}
Let f be any feasible flow in \mathcal{N}
while there is a negative cycle C in \mathcal{N}_f do

\square Augment f along C
return f
```

Theorem

Let $\mathcal{N}=(V,E,c,b,p)$ be a network with costs. If the values c(e), b(v), and p(e) are integers for all $e\in E$ and $v\in V$, then the generic Cycle-Augmenting algorithm computes a min-cost flow in \mathcal{N} in time $O(m^2n\cdot C\cdot P)$, where n is the number of vertices, m is the number of edges, C is the maximum capacity of an edge in \mathcal{N} , and P is the maximum cost of an edge in \mathcal{N} .

The Minimum-Mean Cycle Algorithm

Minimum-Mean Cycle Algorithm

```
Input: A network \mathcal{N} = (V, E, c, b, p)
Output: An min-cost flow f in \mathcal{N}
5 Let f be any feasible flow in \mathcal{N}
6 while there is a negative cycle in \mathcal{N}_f do
7 Let C be a negative cycle in \mathcal{N}_f of minimum-mean cost 8 Augment f along C
```

Theorem

The Minimum-Mean Cycle-Augmenting Algorithm computes a min-cost flow in an integral network with costs with n vertices and m edges in time $O(n^2m^3\log n)$.

